Optimising sampling rates for accelerometer-based human activity recognition

Aftab Khan, Nils Hammerla, Sebastian Mellor, Thomas Ploetz


Real-world deployments of accelerometer-based human activity recognition systems need to be carefully configured regarding the sampling rate used for measuring acceleration. Whilst a low sampling rate saves considerable energy, as well as transmission bandwidth and storage capacity, it is also prone to omitting relevant signal details that are of interest for contemporary analysis tasks. In this paper we present a pragmatic approach to optimising sampling rates of accelerometers that effectively tailors recognition systems to particular scenarios, thereby only relying on unlabelled sample data from the domain. Employing statistical tests we analyse the properties of accelerometer data and determine optimal sampling rates through similarity analysis. We demonstrate the effectiveness of our method in experiments on 5 benchmark datasets where we determine optimal sampling rates that are each substantially below those originally used whilst maintaining the accuracy of reference recognition systems.


Author: Mark Sleightholm

Leave a Reply

Your email address will not be published. Required fields are marked *